Facile Synthesis of α -Chlorosulfoxide Using the N,N'-Dichloro-p-toluenesulfonamide

Yong Hae KIM, * Sang Chul LIM, Hyoung Rae KIM, and Dae Chul YOON Department of Chemistry,

Korea Advanced Institute of Science and Technology,
P.O. Box 150, Cheongyang-Ni, Seoul, Korea

Various unsymmetrical and symmetrical diakyl sulfoxides or alkyl aryl sulfoxides reacted with N,N'-dichloro-p-toluenesulfon-amide to yield the corresponding α -chlorosulfoxide in excellent yields under mild and neutral conditions in high regionelectivity of monochlorination at α -position of sulfoxides.

 α -Halosulfoxides have become useful in the various organic syntheses ¹⁾ and a number of methods for the synthesis of α -chlorosulfoxides have been reported. Sulfuryl chloride²⁾ gives reasonable results in the chlorination of sulfoxide in the absence of base. Most chlorinating reagents, such as nitrosyl chloride,³⁾ p-toluenesulfonyl chloride,⁴⁾ iodobenzene dichloride,⁵⁾ t-butyl hypochlorite,⁶⁾ chlorine,⁷⁾ and N-chlorosuccinimide⁸⁾ need organic or inorganic bases to avoid the Pummerer-type rearrangements⁹⁾ giving α -substituted sulfides instead of α -substituted sulfoxides. In this paper, we wish to report a new and general synthesis of α -chlorosulfoxides: various unsymmetrical and symmetrical dialkyl sulfoxides or alkyl aryl sulfoxides reacted with N,N'-dichloro-p-toluenesulfonamide (N,N'-dichloramine-T)¹⁰⁾ in the absence of base to yield the corresponding α -chlorosulfoxides in excellent yields under mild conditions and with high

Table 1. α -Chlorination of Sulfoxides (R^1 -S(0)- R^2) with N,N'-Dichloramine-T($\underline{2}$)

Run	R ¹	R ²	Solvent	Ratio of <u>1</u> / <u>2</u>	Time min	Products	Yield ^a)
1	CH ₃	CH ₃	CH ₃ CN	2	10	CH ₃ -S-CH ₂ Cl	80 ^b)
2	с ₃ н ₇	^C 3 ^H 7	CH ₃ CN	2	10	с ₃ н ₇ -\$-сн-сн ₂ сн ₃	94 ^{b)}
3	p-CH ₃ O-C ₆ H ₄	CH ₃	CH ₃ CN	2	5	CH ₃ O-S-CH ₂ Cl	98
4	p-CH ₃ O-C ₆ H ₄	CH ₃	CH ₃ CN	1	15	CH ₃ O-S-CHCl ₂	87
5	p-CH ₃ O-C ₆ H ₄	CH ₃	CH ₂ Cl ₂	2	60	CH30-S-CH2C1	71
6	p-CH ₃ O-C ₆ H ₄	CH ₃	^C 6 ^H 6	2	60	CH ₃ 0-\$-CH ₂ C1	66
7	^C 6 ^H 5	CH ₃	CH ₃ CN	2	5	S-CH ₂ C1	91
8	p-C1-C ₆ H ₄	СН3	CH ₃ CN	2	5	C1-S-CH ₂ C1	95 ^{b)}
9	p-NO ₂ -C ₆ H ₄	CH ₃	CH ₃ CN	2	10	NO ₂ S-CH ₂ C1	92
10	^C 10 ^H 7	CH ₃	CH ₃ CN	2	5	S-CH ₂ C1	93
11	p-CH ₃ -C ₆ H ₄	С ₂ Н ₅	CH ₃ CN	2	5	сн ₃ —— - снсн ₃	93
12	p-C1-C6H4	^C 2 ^H 5	CH ₃ CN	2	5	C1-S-CHCH ₃	91
13	p-Br-C ₆ H ₄	^C 3 ^H 7	CH ₃ CN	2	5	Br-S-CHCH ₂ CH ₃	89
14	^C 6 ^H 5 ^{-CH} 2	^C 2 ^H 5	CH ₃ CN	2	5	CH-S-CH ₂ CH ₃	81
15	с ₆ н ₅ -сн ₂ сн	^H 2 ^{-C} 6 ^H 5	CH ₃ CN	2	5	CH ₂ -S-CH-Ch	70

a) Isolated yields. b) Determined by ¹H MNR spectrum.

selectivity of monochlorination at $\alpha\text{-position}$ of sulfoxides.

In a typical experiment, a solution of $\underline{2}$ (60 mg, 0.25 mmol) in acetonitrile (3 ml) was added dropwise into a solution of p-methoxyphenyl methyl sulfoxide

81

(85~mg,~0.5~mmol) in acetonitrile (3~ml) with stirring at 20 $\,^{\circ}\text{C}$ under nitrogen atmosphere. After being stirred for 5 min, the reaction mixture was concentrated under reduced pressure to give a mixture of chloromethyl p-methoxyphenyl sulfoxide and p-toluenesulfonamide, which were separated by preparative TLC (Silica gel, Merck, 60 GF_{254} , $\mathrm{Et}_2\mathrm{O}$: hexane = 5 : 1, $\mathrm{V/V}$) to give a pure product (100 mg, 90%), ^{1}H NMR (CDCl $_{3}$) δ 3.88 (s, 3H), 4.40 (s, 2H), 7.23 (q, 4H) ; IR (KBr) $v_{s=0}$ 1045 cm⁻¹. Other α -chlorosulfoxides were isolated by preparative TLC or column chromatography (Silica gel, Merck, Kieselgel 60, 70-230 mesh, 1 cm x 20 $\,$ cm, ${\rm Et}_2{\rm O}$: hexane = 1:1, ${\rm V/V}$) and identified by comparing their IR, $^1{\rm H}$ NMR, and mp with those of authentic samples. The results are summarized in Table 1. new chlorination method using 2 shows several merits comparing with the previous reported methods. 2 do not need a base because p-toluenesulfonamide formed during the reaction prevents decomposition of the sulfinyl group with the concurrently generated hydrogen chloride. Both two chlorine atoms of 2 could be used to chlorinate the sulfoxide, so that only half equivalent amount of reagent for sulfoxides is needed to monochlorination of α -position of sulfoxides to obtain almost quantitative yields with no formation of by-product for short reaction time within 10 min. It is easy to control the exact amount of 2 for the monochlorination by weighing the reagent.

To check the solvent effects, α -chlorination of p-methoxyphenyl methyl sulfoxide using 2 was carried out in $\mathrm{CH_3CN}$, $\mathrm{CH_2Cl_2}$, and benzene. Among the three solvents, acetonitrile showed the best result ($\mathrm{CH_3CN}$: 98%, Run 3; $\mathrm{CH_2Cl_2}$: 71%, Run 5; benzene: 66%, Run 6 in Table 1). The monochlorinated sulfoxide are significantly less reactive toward 2 than their precursor's sulfoxides. Thus monochlorination seems to occur first and then dichlorination in stepwise. For example, the best yield (98%) of chloromethyl p-methoxyphenyl sulfoxide was produced by using half equimolar amount of 2, but when equivalent amount of 2 was used 87% of dichloromethyl p-methoxyphenyl sulfoxide was obtained (Run 4 in Table 1). In order to see a selectivity in chlorination at α -position of two alkyl groups, a mixture of ethyl p-tolyl sulfoxide and methyl p-tolyl sulfoxide was treated with the half equimolar amount of 2, only α -chloroethyl p-tolyl sulfoxide (80%) was obtained: no evidence for the formation of chloromethyl p-tolyl sulfoxide could be observed by $^{1}{}_{1}$ NMR spectrum of the total crude reaction

mixture, which shows high selectivity in the α -chlorination of alkylsulfoxides with $\underline{2}$ as shown below.

CH₃
$$\bigcirc$$
 S-CH₃ + CH₃ \bigcirc S-CH₂CH₃ \bigcirc CH₃ \bigcirc

When benzyl ethyl sulfoxide (Run 14) was reacted with $\underline{2}$, only α -chlorobenzyl ethyl sulfoxide was obtained (81%) where formation of benzyl chloroethyl sulfoxide was not observed. The reaction is simple and work-up is easy and the commercially available $\underline{2}$ can be handled more conveniently than other known reagents. The reaction mechanism is being investigated.

This work was supported by Korea Science and Engineering Foundation.

References

- T. Durst and K.C. Tin, Tetraheron Lett., <u>27</u>, 2369 (1970); D.F. Tavares, R.E. Estep, and M. Blezard, ibid., <u>27</u>, 2373 (1970); T. Durst, J. Am. Chem. Soc., <u>91</u>, 1034 (1969); G. Tsuchihashi and K. Ogura, Bull. Chem. Soc. Jpn., <u>45</u>, 2023 (1972).
- 2) K.C. Tin and T. Durst, Tetrahedron Lett., 27, 4643 (1970).
- 3) R.N. Loeppky and D.C.K. Chang, Tetrahedron Lett., 25, 5415 (1968).
- 4) M. Hojo and Z. Yoshida, J. Am. Chem. Soc., 90, 4496 (1968).
- 5) M. Cinquini, S. Colonna, and F. Montanari, J. Chem. Soc., Perkin Trans. 1, 1972, 1883.
- 6) S. Iriuchijima and G. Tsuchihashi, Tetrahedron Lett., 26, 5259 (1969).
- 7) G. Tsuchihashi and S. Iriuchijima, Bull. Chem. Soc. Jpn., 43, 2271 (1970).
- 8) K. Ogura, J. Imaizumi, H. Iida, and G. Tsuchihashi, Chem. Lett., 1980, 1587.
- 9) T. Durst, Adv. Org. Chem., $\underline{6}$, 285 (1969) and references therein.
- 10) R.W. Heinzelman and D. Swern, Synthesis, 1976, 731.

(Received October 2, 1989)